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ABSTRACT: We report preparation of highly transparent,
flexible, and thermally stable superhydrophobic organically
modified silica (ORMOSIL) aerogel thin films from colloidal
dispersions at ambient conditions. The prepared dispersions
are suitable for large area processing with ease of coating and
being directly applicable without requiring any pre- or post-
treatment on a variety of surfaces including glass, wood, and
plastics. ORMOSIL films exhibit and retain superhydrophobic
behavior up to 500 �C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic
(contact angle of 179.9�) to superhydrophilic (contact angle of <5�) by calcination at high temperatures. The wettability of the
coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and
high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics,
and lab on papers.
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’ INTRODUCTION

Superhydrophobic surfaces with water contact angle (CA)
larger than 150� and a sliding angle (SA) lower than 10� have
potential applications including self-cleaning materials, stain-
resistant textiles, and prevention of snow accumulation on out-
door antennas and windows.1,2 Self-cleaning Lotus leaf is a well-
known superhydrophobic surface in nature which is composed
ofmicrometer- and nanometer-scaled patches coatedwith a 1 nm
thick hydrophobic layer. The roughness of the patches enables
trapping of air below the water droplet, thus helping the rolling of
water droplets easily, resulting in a well designed superhydro-
phobic surface.3 Inspired by this structure, many artificial super-
hydrophobic surfaces have been produced, with a variety of
techniques such as sol-gel techniques,4-7 co-condensation,8,9

layer-by-layer deposition,10,11 hydrothermal synthesis,12,13

electrospinning,14,15 chemical deposition,16 and lithographic
methods.17-19 However, simple, low-cost, and large area fabrica-
tion of superhydrophobic surfaces, which is crucial for practical
applications, is rarely achieved. In addition, durability and
transparency of superhydrophobic surfaces are also important
for many applications.

Here, we report a simple, large area, inexpensive sol-gel
method to produce highly transparent and flexible organically
modified silica (ORMOSIL) superhydrophobic aerogel thin films
with good thermal andmechanical stability. ORMOSILmaterials
are preferred due to their unique properties between those of

polymers and glassesmeeting the requirements, such as flexibility
and stability at atmospheric conditions, which cannot be afforded
by either organic polymers or glasses alone. In addition, it is
possible to change both chemical and physical properties of the
resulting surfaces, such as wettability, by changing the organic
group on the ORMOSIL.20 To date, some superhydrophobic
ORMOSIL surfaces have been produced with electrospinning,
co-condensation, and vapor deposition methods starting with
alkyl-functional precursors such as methyltrimethoxysilane
(MTMS) and trichloromethylsilane (TCMS).9,21-24 However,
some of these coatings are not transparent,21,24 some need pre-
and post-treatment,23 and some do not have good control over
thickness and porosity.9,22 On the other hand, ORMOSIL
aerogel thin films produced in this work are highly transparent,
do not need any pre or post surface treatments and can be applied
on a variety of substrates including glass, wood, and plastics at
ambient conditions with common thin-film deposition methods
such as spin, dip, and spray coating. Also, the films on flexible
substrates exhibited superhydrophobic behavior after bending
multiple times. Furthermore, films preserved superhydrophobic
behavior up to 500 �C, and above 600 �C the films became
superhydrophilic (contact angle <5�).25
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Superhydrophobic ORMOSIL aerogel thin films were pro-
duced from colloidal dispersions obtained by breaking ORMOSIL
gels into small pieces with sonication. The ORMOSIL gels were
synthesized by using only methyltrimethoxysilane (MTMS)
precursor. First, MTMS hydrolyzes under acidic conditions
and then condenses to form a gel network under basic condi-
tions. The resulting gel is opaque due to macroscopic phase
separation during gelation, induced by MTMS monomer form-
ing cyclic and cage-like closed species;26-28 however, the result-
ing thin films are highly transparent. The surface of thin films is
covered with nonhydrolyzable methyl groups. They prevent
collapse of the pores inside the gel during solvent evaporation
(spring-back effect)29-31 at ambient temperature and pressure
and result in a highly porous structure with hydrophobic surface
groups.30,32-34 Also, covalently bonded organic methyl groups
provide formation of a flexible network by decreasing the number
of inorganic (Si-O-Si) bonds (less cross-linked). Thus, by
using only MTMS as monomer it is possible to obtain flexi-
ble and intrinsically superhydrophobic aerogel structures in a
single step.

’EXPERIMENTAL SECTION

MTMS, methanol, oxalic acid, and ammonium hydroxide (26%) were
purchased from Sigma-Aldrich (U.S.) and used as purchased. Gels were
obtained by two-step acid-base catalysis mechanism.30 In the first step
of the preparation for 35 mol fraction methanol-containing gels, 1 mL of
MTMS was dissolved in 9.74 mL of methanol. Following the addition of
0.5 mL of 0.001 M oxalic acid solution the reaction mixture was stirred
for 30 min and left for hydrolysis for 24 h at room temperature. After
the hydrolysis, 0.61 mL of 11.2 M ammonium hydroxide solution
was dropwise added to the reaction mixture in order to catalyze the
condensation reaction. Following 15min of stirring, the solution was left
for gelation and aging for 2 d at room temperature. The resulting gel was
diluted with 10 mL of methanol and homogenized, by using an
ultrasonic liquid homogenizer,29 for 45 s at 20 W power. The obtained
homogenized solution was spin-coated at a rate of 2000 rpm on glass
microscope slides which were cleaned in an ultrasonic cleaner for 15min
with ethanol. Prepared ORMOSIL films were left to dry at room tem-
perature overnight for complete evaporation of remaining solvent. The
films were named with the first number in the abbreviation (Me35-a)
indicating the mol fraction of methanol and the letter following the dash
indicating the heat treatment condition, where “a” is used for as-
prepared films, and “b” and “c” are used for the films annealed at 450
and 600 �C for 1 h , respectively. A contact angle meter (OCA 30,
Dataphysics) was used to measure the static water contact angles on the
ORMOSIL aerogel thin films before and after annealing steps. Water
droplets of 0.4 μL volume were used with Laplace-Young fitting for
contact angle measurements. Microstructure observations of thin films
were carried out using an environmental scanning electron microscope

(E-SEM, Quanta 200F, FEI) at low vacuum conditions. Nanostructure
of the ORMOSIL aerogel structure was visualized by bright-field images
with a transmission electron microscope (TEM, Tecnai G2 F30, FEI)
operated at 200 kV. The TEM samples were prepared on holey carbon
coated copper grid by scratching a piece from the films into a drop of
ethanol and placing it on the grid. Surface roughness was analyzed using
an atomic force microscope (AFM, XE-100E, PSIA) at noncontact
mode. Spectroscopic refractive indexmeasurements were obtained by an
Ellipsometer (V-Vase, J. A. Woollam). Optical transmission measure-
ments were carried out using a UV-vis spectrophotometer (Carry
100 Bio, Varian). Chemical analysis of the surface was performed using
X-ray photoelectron spectroscopy (XPS, K-Alpha, Thermo Scientific).
Detailed chemical analyses were performed using thermal gravimetric
analysis (TGA, Q500, TA Instruments) and differential scanning
calorimetry (DSC, Q2000, TA Instruments). Functional groups were
characterized by using a Fourier transform infrared spectrometer (FTIR,
Vertex 70, Bruker).

’RESULTS AND DISCUSSION

Highly transparent and superhydrophobic ORMOSIL aerogel
thin films were prepared from three different gels with varying
molar ratios of MTMS, methanol, and water (1:35:8, 1:25:8, and
1:15:8 respectively, given in Table 1). Gels were prepared in
two steps: acid-catalyzed hydrolysis and base-catalyzed conden-
sation. Prepared gels were aged for 2 d at room temperature in
order to strengthen the gel network and to prevent pore collapse
during ambient drying. We observed pore collapse and non-
homogeneous film formation for gels aged for shorter periods.
Following the aging, they were diluted with methanol and soni-
cated to break down the gel network in order to form a homo-
geneous suspension. The prepared suspensions were stable up
to 24 h depending on the amount of methanol added during
dilution, and they can be resuspended with sonication. The
ORMOSIL suspension can be easily applied on various surfaces
with common coating techniques such as spin, dip, and spray
coating. Furthermore, the films exhibit superhydrophobic
property immediately after coating without requiring any post-
treatments.

The surface morphologies of ORMOSIL aerogel films were
investigated by SEM analysis given in Figure 1. SEM images in-
dicated that all the films had highly porous networks, and as the
mol fraction of methanol increased the films tended to have a
structure with larger pores. A denser film was observed forMe15-a
(Figure 1a) whereas Me25-a and Me35-a (Figure 1b and c)
revealed more of the micrometer-sized holes. The contact angle
of a surface is related both with surface energy and the rough-
ness.35,36 Produced aerogel thin films contain both micrometer-
and nanometer-scale roughness similar to lotus leaves.3,37

Table 1. Compositions, Annealing Conditions, Porosity, Refractive Indices, Average Roughness Values, and Contact Angles of
Aerogel Thin Films

sample MeOH:MTMS fraction annealing (�C) porosity (%) refractive indexa roughness (nm) contact angle (deg)

Me15-a 15:1 60 1.16 43 142.5( 1.0

Me15-b 15:1 450 78 1.09 51 170.4( 4.3

Me25-a 25:1 60 1.16 43 171.1( 2.0

Me25-b 25:1 450 78 1.09 40 164.8 ( 3.2

Me35-a 35:1 75 1.10 120 178.4( 1.5

Me35-b 35:1 450 75 1.08 86 179.5( 0.4

Me35-c 35:1 600 88 1.05 67 < 5
aThe refractive indices of thin films were measured at a wavelength of 650 nm.
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Combination of micrometer- and nanometer-sized pores pro-
vides superhydrophobicity. ORMOSIL aerogel films exhibited
very high contact angles reaching 179.9� (Table 1). Combined
evaluation of the SEM micrographs and the contact angle mea-
surements revealed that the increase in the macroporosity results
in higher static contact angle values. This stems from increasing
roughness which allows more air to be trapped between water
and surface. We observed that the films were thermally very
stable compared to organic coatings. The films preserved the
superhydrophobicity even after annealing at 500 �C for 1 h. For
higher temperatures, the contact angle started to decrease and
superhydrophilic films with contact angle less than 5� were
obtained at 600 �C (Figure 1d).

Superhydrophobic coatings must be transparent in order to
be used in window glass or solar cells. However, high surface
roughness required for superhydrophobicity lowers the trans-
parency by scattering light especially when the roughness is
higher than 100 nm.1,38 Thus, the surface roughness must also
be optimized to obtain a transparent superhydrophobic coat-
ing. The surface roughness of the produced films was deter-
mined by the AFM (Figure 1e-h) given in Table 1. Except for
Me35-a, which appears translucent, all the other films had
average surface roughnesses smaller than 100 nm, resulting in
a highly transparent appearance. The TEM image of Me25
dispersion indicated that the suspension was composed of
approximately 20-nm sized interconnected ORMOSIL clusters
(Figure 2).

Transmittance of Me35 films at different annealing condi-
tions are given in Figure 3a. For comparison, the transmittance
of glass substrate is also given. Although as-prepared films have
adequate transparency, optical transparency can be further
improved by calcination (Figure 3b). It was observed that some
calcined films have even higher optical transmission than the
glass slide due to reduced back reflections.

Porosity of the films was calculated on the basis of spectro-
scopic ellipsometric refractive index measurements according to

the mathematical relationship between the refractive index and
porosity as follows:33

M ¼ 1:399- nD
1:399- nA

ð1Þ

where 1.399 is the measured refractive index of nonporous film
which has been prepared from the same precursor39 and nD and
nA are the refractive indices of the porous film and air. The films
were found to have porosities reaching 87.5%. Measured refrac-
tive index and calculated porosity values are provided in Table 1,
indicating that closer packing of ORMOSIL clusters for lower
methanol mol fractions result in lower porosity, as confirmed by
SEM. As a result of lower porosity, these films exhibited higher
refractive indices. Calcination results in decrease in the refractive
index values for all sets of prepared films, indicating an increase of
porosity. For example, refractive index of Me35-a decreases from
1.10 to 1.05 after calcination at 600 �C for 1 h (Figure 4).

Figure 1. SEMmicrographs showing (a) Me15-a, (b) Me25-a, (c) highly porous structure of the uncalcined superhydrophobic Me35-a film, (d) more
porous structure of calcined superhydrophilic Me35-c film annealed at 600 �C for 1 h. Insets show the pictures of water contact angle of corresponding
films. AFM images of (e) Me15, (f) Me25-a, (g) Me35-a, and (h) Me35-c are from a 10 μm � 10 μm area.

Figure 2. TEMmicrograph ofMe25 showing theORMOSIL clusters of
approximately 20-nm diameter forming the aerogel network.
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Enhancement of porosity following calcination was also con-
firmed by comparison of SEM images obtained fromMe35-a and
Me35-c films, similar to the affect of chemical composition. Film
thicknesses values were also obtained on the basis of ellipso-
metric measurements and were 550, 800, and 680 nm, respec-
tively, for Me35-a, Me25-a, and Me15-a films.

ORMOSIL suspensions can be applied with common coating
techniques like spin, spray, and dip coatings, without requiring
any post-treatments. This makes it possible to coat superhydro-
phobic aerogels on many different surfaces other than glass,
including wood, wall tile, aluminum slab, cotton cloth, and
plastics, which enables fast and easy production of large-scale

superhydrophobic coatings. The films on flexible substrates ex-
hibit superhydrophobicity even when they are bent, and after
many cycles of bending. This indicates that the films themselves
are flexible, due to the ORMOSIL network. The static contact
angles and sliding angles for Me35-a coated polyetherimide
(PEI), polyethersulfone (PES), polysulfone (PSU) (Figure 5),
polyvinylidene fluoride (PVDF), a wood surface, wall tile,
aluminum slab, and on cotton cloth (Table 2) show that this
coating can be successfully applied to obtain different types of
flexible superhydrophobic surfaces.

The chemical composition of theMe35-a film was determined
on the basis of thermogravimetric analysis (TGA) and differen-
tial scanning calorimetry (DSC) measurements and verified with
Fourier transform infrared spectroscopy (FTIR). TGA measure-
ment of the Me35-a film (Figure 6a) indicated that calcination
of the ORMOSIL network causes some groups to be removed

Figure 3. (a) Optical transmission of Me35-a, Me35-b, Me35-c, and
plain glass with respect to wavelength. For calcinated thin films at 600 �C
optical transparency is found to be similar to the glass substrates and
even better for some wavelengths. (b) Photographs of ORMOSIL
aerogel thin films coated on glass substrates. Optical transparency at
visible wavelength increases with increasing annealing temperature.

Figure 4. Measured index of refraction ofMe35-a, Me35-b, andMe35-c
aerogel thin films as a function of wavelength at visible and near-infrared
regions. Refractive indices decrease with increasing the annealing tem-
perature.

Figure 5. (a) Water droplets on a planar surface coated with Me35-a.
(b) Rolling water droplets from superhydrophobic ORMOSIL aerogel
thin film coated PES film while it is bent.

Table 2. Static Contact Angles and Sliding Angles of Differ-
ent Materials after Coating by Me35-a Aerogel Thin Film

material static contact angles (�C) sliding angles (�C)

PEI 146.1( 2.5 3.1

PES 156.0( 3.3 3.8

PSU 156.2( 2.9 2.3

PVDF 156.7( 3.3 2.3

glass 178.4( 1.5 0.7

wood 170.1( 9.7 1.5

wall tile 167.6 ( 4.2 2.3

aluminum slab 172.8( 6.8 2.3

cotton cloth 157.6( 4.9 3.1
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resulting in a decrease of the measured weight. Hydrolysis of
MTMS under acidic conditions can yield trisilanol which results
in incomplete condensation of silicones with formula CH3

SiO1.5-n (OH)2n.
8 The presence of Si-OH stretching vibration

around 900 cm-1 observed in the FTIR spectrum (Figure 6b)
also verifies incomplete condensation for this sample.

Average weight of the condensation product, M, can be
calculated from the percentage of solid remaining according to
the formula

M ¼ MSiO2

84:9%
ð2Þ

where 84.9% is the percentage of the solid remaining following
the calcination up to 900 �C and MSiO2

is the molecular weight
of SiO2 which is supposed to be the final product. According to
eq 2, the chemical formula of the ORMOSIL is found to be CH3

SiO1.29 (OH)0.42 and the n value is 0.21. DSC results given in
Figure 6a also verify the TGA results. At around 300 �C the weight
of the aerogel film started to decrease and simultaneously an
exothermic process starts to take place according to DSC result.

The dependence of hydrophobicity on the presence of methyl
groups was shown with XPS measurements for Me35-a and
Me35-c in Figure 7a and b, respectively. The surface of the
ORMOSIL aerogel thin films was composed of oxygen, silicon,
carbon, and hydrogen atoms. For Me35-a (Me35-c), oxygen
amount was found to be 44.65% (52.65%) and carbon amount
was found to be 20.85% (10.38%). The sharp decrease in the car-
bon amount and increase in the oxygen demonstrates the replace-
ment of methyl groups with hydroxyl groups upon calcination.

Figure 6. (a) TGA Result of Me35-a film under air flow (blue line) and
DSC analysis of the same film (red line) with a temperature ramp of
10 �C/min for both analysis. (b) FTIR spectra of Me35-a film indicat-
ing incomplete condensation and Me35-c film showing the breaking of
methyl groups with annealing. All peaks are assigned according to
literature.8

Figure 7. (a) XPS result for uncalcined superhydrophobic aerogel thin
film Me35-a. (b) XPS result for calcined superhydrophilic aerogel
thin film Me35-c. XPS measurements indicate replacement of surface
methyl groups by hydroxyl groups after annealing at 600 �C for 1 h.

Figure 8. (a) Controlled wettability of water droplet on aerogel thin
films calcined at 450, 575, and 600 �C for 1 h from left to right.
(b) Dependence of contact angle on calcination temperature, for 1 h
durations at each temperature. While the contact angle is nearly un-
changed up to 500 �C, it decreases rapidly between 500 and 600 �C.
(c) Dependence of contact angle on calcination duration at 600 �C.
Contact angle drops continuously as annealing time increases.
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The decrease in methyl groups was also verified from the FTIR
measurements of these samples.

The dependence of contact angle on calcination temperature
and duration was investigated in detail using the Me35-a film
(Figure 8). In the literature, reported hydrophobic to hydrophilic
transition temperatures range from 260 to 480 �C for the bulk
aerogels,27,25,40 500 �C for thin films8 obtained from same
monomer, and 700 �C for methyltriethoxysilane monomer.21

In our study, it was observed that the contact angle of the Me35-a
film can be tuned by calcination temperature. Me35-a film was
calcined at various temperatures ranging from 450 to 600 �C for 1 h
periods; conversion from superhydrophobic to superhydrophilic
(contact angle <5�) is shown in Figure 8b. The contact angle vs
temperature graph indicates that the contact angle remains constant
up to 500 �C after which it decreases monotonically with increasing
temperature. The time dependence of the contact angle on calcina-
tion duration at 600 �C shows the superhydrophilicity is achieved
after 35 min (Figure 8c). These results prove that it is possible to
tune wettability of the aerogel thin films by applying appropriate
calcination temperature and duration.

’CONCLUSIONS

In this study, a facile method for the preparation of super-
hydrophobic and highly transparent ORMOSIL aerogel thin
films is described. The superhydrophobic ORMOSIL aerogel
thin films were prepared from ORMOSIL dispersions in metha-
nol, which were obtained by using an intrinsically hydrophobic
organo-silane monomer (MTMS). These ORMOSIL disper-
sions offer easy handling and good reproducibility for producing
superhydrophobic thin films on large areas with simple coating
methods. Furthermore, these superhydrophobic films can be
applied to almost every substrate without the need of any pre-
treatments of the substrate. The films on flexible substrates
exhibit superhydrophobic behavior even when the substrate is
highly bent. This indicates that films are also flexible as a result of
the ORMOSIL network.

As-prepared ORMOSIL aerogel thin films have high contact
angles (up to 179.9�) and low sliding angles (<5�), due to two
scale roughness. The hydrophobicity of the films is stable up to
500 �C. For higher temperatures, the contact angle value gra-
dually decreases, finally reaching superhydrophilic region (<5�)
at 600 �C. As-prepared films are highly transparent (up to 87.6%
at 650 nm) and that can be further improved by calcination
(up to 92.1% at 650 nm) at high temperatures.

This simple, large area, and low-cost fabrication method of
superhydrophobic ORMOSIL aerogel thin films make them
suitable as transparent and flexible self-cleaning surfaces for
several application fields including solar cells, waterproof textiles,
flexible electronics, and lab on papers.
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